Journal of Organometallic Chemistry, 218 (1981) 147–154 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

SUBSTITUENT EFFECTS OF SOME ORGANOSILYLMETHYL GROUPS

COLIN EABORN *, ALAN R. HANCOCK and WLODZIMIERZ A. STAŃCZYK * School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ (Great Britain) (Received March 10th, 1981)

Summary

The charge transfer frequencies for some tetracyanoethylene-PhX complexes have been used to derive σ_p^+ constants and ¹³C NMR data to derive σ_R^0 constants for the X groups, with the following results (X, $-\sigma_p^+$, $-\sigma_R^0$): H₃SiCH₂, 0.27, 0.16; Me₃SiCH₂, 0.54, 0.20; Et₃SiCH₂, 0.57, 0.21; n-Pr₃SiCH₂, 0.58, 0.21; (Me₃Si)₃C, 0.62; 0.22; (MeO)Me₂SiCH₂, 0.45, 0.19; (MeO)₂MeSiCH₂, 0.40, 0.18; (MeO)₃Si-CH₂, 0.24, 0.17; Et₃GeCH₂, 0.67, 0.21. The first ionization potentials as given by photoelectron spectroscopy are reported for PhCH₂SiY₃ with Y₃ = H₃, Me₃, Et₃, n-Pr₃, (MeO)Me₂, (MeO)₂Me, and (MeO)₃, and rates of detritiation in CF₃-CO₂H at 70° C for *p*-R₃SiCH₂C₆H₄·³H with R = Me, Et, and n-Pr; these rates are used to derive σ_p^+ constants of -0.56 for Me₃SiCH₂ and -0.57 for Et₃SiCH₂ and n-Pr₃SiCH₂.

Introduction

The use of charge transfer frequencies for the complexes between substituted benzenes, PhX, and tetracyanoethylene (TCNE) to determine the σ_p^+ constants of the X groups, which was pioneered by Traylor and his colleagues [1], was recently refined by Davis and employed by him to derive σ_p^+ constants for a range of (organometal)methyl groups [2]. Since we had available the relevant data for a range of Y₃SiCH₂Ph and related compounds, we have used the relationship devised by Davis to obtain such constants for some (organosilyl)methyl groups. We have also used the ¹³C NMR spectra of the Y₃SiCH₂Ph and related compounds to derive approximate values of the corresponding σ_0^R constants. For a few of the compounds some PES data are also presented, as are rates of detritiation for some *p*-R₃SiCH₂C₆H₄·³H compounds, which provide a further measure of electron release by the R₃SiCH₂ groups.

^{*} Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-362 Łodz, Boczna 5, Poland.

Results and discussion

A. Charge transfer frequencies

The charge transfer frequencies ν_{TCNE} recorded for PhX/TCNE mixtures in CH₂Cl₂ are shown in Table 1, along with the σ_p^+ constants for the X groups calculated by use of the relationship 1 derived by Davis [2]. The data mainly refer to silicon compounds, but those for Et₃GeCH₂Ph and (PhCH₂)₂Hg are included to permit comparison of our results with those discussed by Davis.

$$\sigma_{\rm p}^{\rm +} = 9.46 \times 10^{-5} \,\nu_{\rm TCNF} - 2.466$$

(1)

The features of the results are as follows:

(a) The σ_p^+ values derived for Me₃SiCH₂, Et₃GeCH₂, and PhCH₂HgCH₂ groups agree well with those given by Davis. The σ_p^+ values for Et₃SiCH₂ and n-Pr₃Si-CH₂ are slightly larger than those for Me₃SiCH₂, and consistent with the value of -0.55 derived by Davis for n-Bu₃SiCH₂ using data reported by Egorochkin et al. [3]. However, our σ_p^+ value for the (Me₃Si)₃C group, -0.62, is significantly smaller than that derived by Davis, again from the data of Egorochkin et al.

(b) For the $(MeO)_n Me_{3-n}SiCH_2$ groups, the σ_p^+ value falls progressively as n is varied from 0 to 1 to 2 to 3, so that as measured by σ_p^+ values $(MeO)_3SiCH_2$ is substantially less electron releasing than the Me₃SiCH₂ group, and somewhat less electron releasing than the Me group. The change in σ_p^+ on going from Me₃-SiCH₂ to $(MeO)_3SiCH_2$ (+0.30) is rather similar to that (+0.28) on going from Et₃GeCH₂ to (EtO)₃GeCH₂ [2].

(c) The H_3SiCH_2 group is markedly less electron releasing than the Me_3SiCH_2 group, and rather similar in this respect to the $(MeO)_3SiCH_2$ group.

Additional ν_{TCNE} data for α -silyl and α -germyl-methyl substituents have recently been presented by Egorochkin and his colleagues [21], supplementing those reported earlier [3]. The values are shown in Table 2, along with the corresponding σ_p^+ values which they calculated by use of the equation 5260 $\sigma_p^+ =$ $(\nu_{\text{TCNE}} - 24\,800)$, and those we derived from their ν_{TCNE} values by use of the Davis equation (eq. 1). The σ_p^+ values derived by Egorochkin et al. are clearly on a different scale from the common σ_p^+ values and so cannot be used along-

TABLE 1

х 10⁻³ v_{TCNE} (cm⁻¹) $-\sigma_p^+$ H₃SiCH₂ 23.2 0.27 Me₃SiCH₂ 20.4 0.54 Et₃SiCH₂ 20.0 0.57 n-Pr3SiCH2 19.9 0.58 (Me₃Si)₃C 19.50.62 (MeO)Me2SiCH2 21.3 0.45 (MeO)>MeSiCH2 21.8 0.40(MeO)₃SiCH₂ 23.5 0.24Et₃GeCH₂ 19.0 0.67 PhCH₂HgCH₂ 16.0 0.95

CHARGE TRANSFER FREQUENCIES OF PbX—TNCE COMPLEXES, AND DERIVED σ_p^+ CONSTANTS FOR X GROUPS

TABLE 2

x	10 ⁻³ ^v TCNE (cm ⁻¹)	σ _p + (From ref. 21)	$-\sigma_p^+$ (From eq. 1)	
Me ₃ SiCH ₂	20.8	0.76	0.50	
Me(PhCH ₂) ₂ SiCH ₂	19.7	0.97	0.60	
HMe(PhCH ₂)SiCH ₂	20.0	0.91	0.57	
HEt ₂ SiCH ₂	20.2	0.87	0.55	
H(t-Bu)2SiCH2	20.9	0.74	0.49	
HEt(PhCH ₂)SiCH ₂	20.4	0.84	0.54	
Me3GeCH2	19.2	1.01	0.65	
H2EtGeCH2	19.3	1.05	0.64	
H(PhCH ₂) ₂ GeCH ₂	19.4	1.03	0.63	
H ₂ (PhCH ₂)GeCH ₂	19.8	0.95	0.59	
HEt(PhCH ₂)GeCH ₂	20.0	0.91	0.57	
(EtO) ₃ GeCH ₂	22.0	0.53	0.38	

CHARGE TRANSFER DATA FOR PhX FROM REF. 21, AND DERIVED σ_n^+ CONSTANTS

side the latter, but we must caution against use even of the values derived from the Davis equation *. Our reasons for this are as follows:

(a) The ν_{TCNE} value given by Egorochkin et al. for Me₃SiCH₂Ph, is significantly higher than the values which we and others have reported [1,22]; use of their value gives an unacceptable σ_p^+ value of -0.50 (on the Davis scale) for the Me₃SiCH₂ group.

(b) There are variations within the reported ν_{TCNE} values [3,21] for PhX which seem improbable. For example, Egorochkin et al. report a value for X = $H(PhCH_2)_2SiCH_2$ substantially larger than that for HEt₂SiCH₂ (the corresponding σ_p^+ values would be -0.45 and -0.55, respectively), yet a value for Me- $(PhCH_2)_2SiCH_2$ significantly smaller than that for Me₃SiCH₂ (the corresponding σ_p^+ values would be -0.60 and -0.50, respectively); it is unlikely that replacement of an Me by a CH₂Ph group would increase the electron release, especially by such a large amount, particularly if replacement of Et by CH₂Ph substantially decreases the release. Again, a substantially greater electron release by HEt₂SiCH₂ than by H(i-Pr)₂SiCH₂ (the σ_p^+ values would be -0.55 and -0.49, respectively) would seem improbable.

Our finding that the electron release (as measured by the σ_p^+ contrast) from the (MeO)₃SiCH₂ group is rather similar to that for the H₃SiCH₂ group is not consistent with a recent conclusion, based on ab initio calculations, that the Si—O bond is highly polar (much more so than would be expected from electronegativities) and has very little $(p-d)_{\pi}$ character [23]. In the absence of π -bonding, the Si—OR would be expected to be markedly more polar than the Si—H bond (even if the polarity of the Si—O bond were no greater than expected from the electronegativities), to make (MeO)₃SiCH₂ substantially less electron releasing than H₃SiCH₂. The other measures of electron release considered below confirm that the H₃SiCH₂ group is significantly less electron releasing than the Me₃SiCH₂ group.

^{*} The same caution must apply to use of values derived by Davis [2] from the earlier v_{TCNE} data of Egorochkin and his colleagues [3].

x	δ (ppm)	δ (ppm)						
	 C _α	C_o and C_m	Cp	C _{ipso}	Other			
H ₃ SiCH ₂	15.9	128.0, 128.7	125.0	139.3				
Me3SiCH2	27.1	128.2	124.0	140.3	a			
Et ₃ SiCH ₂	21.6	128.1	123.8	140.5	Б			
n-Pr3SiCH2	22.8	128.1	123.8	140.6	c			
Ph3SiCH2	23.6	128.1, 129.3	124.5	138.2	d			
MePh ₂ SiCH ₂	24.5	128.0, 129.3	124.3	138.7	е			
Me ₂ PhSiCH ₂	26.2	128.1, 129.1	124.1	139.6	f			
(MeaSi)2CH	29.7	128.2, 128.8	123.5	143.1	Ĵ			
(MeaSi)aC	21.6	127.7. 131.7	123.6	143.3	g			
(MeO)Me2SiCH2	g	128.2	124.2	138.9	h			
(MeO)2MeSiCH2	g	128.2, 128.4	124.4	137.7	h			
(MeO) ₂ SiCH ₂	g	128.2. 128.4	124.6	136.9	h			
EtaGeCHa	21.1	127.9. 128.2	123.7	141.8	ī			

13C NMR SPECTRA OF XC6H5 COMPOUNDS IN CDCl3

^a 1.80 (SiCH₃). ^b 3.0 (SiCH₂CH₃); 7.3 (SiCH₂CH₃). ^c 14.9, 17.4 and 18.6 (SiCH₂CH₂CH₃). ^d 129.6 (p-C in Ph); 136.0 (o- and m-C in Ph); 134.2 (ipso-C in Ph). ^e 4.7 (SiCH₃); 127.7 and 134.6 (o- and m-C in Ph); 128.6 (p-C in Ph); 136.2 (ipso-C in Ph). ^f 3.3 (SiCH₃); 127.7 and 133.7 (o- and m-C in Ph); 128.3 (p-C in Ph); 138.4 (ipso-C in Ph). ^g 4.4 (SiCH₃). ^h Not recorded. ⁱ 3.9 (GeCH₂CH₃); 8.9 (GeCH₂CH₃). ^j 0.4 (SiCH₃).

B. ¹³C NMR spectra

Details of the ¹³C NMR chemical shifts are shown in Table 3 for a range of PhX compounds. There was no difficulty in assigning the signals to the appropriate carbon atoms, except that, as is commonly the case, no choice could be made between o- and m-carbons. The shift for the *ipso*-C atom showed little variation and was always larger than that for the other ring carbons, and the peak heights for the o- or m-C's were always substantially larger than those for the *ipso*- and *para*-carbon. Off resonance experiments, giving a doublet for the *p*-C atom, were used in several cases to confirm the choice between the *ipso*- and *p*-C atoms.

In Table 4 values $\delta(C_p)$ of the shifts for the *para*-carbon atoms are given, along with those for the difference $\delta(C_p) - \delta(C_m)$, between the shifts for the *para*- and *meta*-carbons in cases in which the shifts for the *o*- and *m*-positions coincided or were very similar. There is an approximate proportionality between $\delta(C_p)$ values and σ_R^0 values [4,5], though Taft and his colleagues recently showed that $\delta(C_p)$ values are more accurately related to $4.0\sigma_I +$ $19.8\sigma_R^0$ [6]. To derive approximate σ_R^0 values for the X groups in PhX we assumed a simple proportionality, and used σ_R^0 values of 0.00 for X = H and -0.20 for Me₃SiCH₂ [7,8] to define the slope of the correlation line, and the resulting values are shown in the third column of Table 4. To use the $\delta(C_p) - \delta(C_m)$ values, we analyzed data [6] for a large number of X groups and found a very good correlation of the form of eq. 2 *,

TABLE 3

^{*} The approximate relationship $\delta(C_m) = -1.54\sigma_I + 1.6\sigma_R^0$ has been derived by Topsom [10]; we arrived at the slightly different relationship $\delta(C_m) = -1.97\sigma_I + 1.85\sigma_R^0$.

VALUES OF UR FOR X DERIVED FROMC NMR SHIFTS IN ACCHS COMPOUNDS						
x	δ _p (ppm)	δ _p — δ _m (ppm)				
			From δ_p^{a}	From $(\delta_p - \delta_m)^b$		
H ₃ SiCH ₂	125.0		0.16			
Me ₃ SiCH ₂	124.0	4.2	0.20	0.18		
Et ₃ SiCH ₂	123.8	4.3	0.21	0.19		
n-Pr3SiCH2	123.8	4.3	0.21	0.19		
Ph ₃ SiCH ₂	124.5		0.18			
Ph ₂ MeSiCH ₂	124.3		0.19			
PhMe ₂ SiCH ₂	124.1		0.20			
(Me ₃ Si) ₂ CH	123.5		0.22			
(Me ₃ Si) ₃ C	123.6		0.22			
(MeO)Me ₂ SiCH ₂ 12	124.2	4.0	0.19	0.17		
(MeO)2MeSiCH2	124.4	3. 9	0.18	0.17		
(MeO) ₃ SiCH ₂	124.6	3.7	0.17	0.16		
Et3GeCH2	123.7		0.21			

VALUES OF σ_R^0 FOR X DERIVED FROM ¹³C NMR SHIFTS IN XC₆H₅ COMPOUNDS

^a From $\sigma_{\rm R}^0 = 0.2$ ($\delta_{\rm p}$ in XC₆H₅ - δ in C₆H₆). ^b From $\delta_{\rm p} - \delta_m = 22.89 \sigma_{\rm R}^0$.

$$\delta(C_p) - \delta(C_m) = 22.89\sigma_R^0 + 0.46$$

For use with $\sigma_{\rm R}^0$ values close to unity it seems appropriate to constrain the line to pass through the origin (the line corresponding to eq. 2 misses the origin by 0.02 units of $\sigma_{\rm R}^0$) and the values in the fourth column of Table 3 are derived by use of the simpler relationship eq. 3.

$$\delta(C_p) - \delta(C_m) = 22.89\sigma_R^0$$

TABLE 4

There is a satisfactory agreement between the two sets of σ_R^0 values, those in the fourth column of Table 4 being, with one exception, 0.01 or 0.02 units smaller (numerically) than those in the third column. We prefer the latter set because it is "normalized" to the literature value [7,8] of -0.20 for the Me₃Si-CH₂ group and because it is more complete. In both sets the σ_R^0 values for the H₃SiCH₂ and (MeO)₃SiCH₂ groups are significantly lower than that for the Me₃-SiCH₂ group, but the differences are proportionately smaller than those observed for σ_p^+ constants.

Photoelectron spectra

Since relationship 4 has been held to apply between the charge transfer fre-

$$h\nu_{\rm TCNE} \approx 0.831.\rm{IP} - 4.42$$

quencies for PhX \cdot TCNE complexes and the first ionization potential (in eV), IP, of PhX [11], the IP should also be related to the σ_p^+ constants of X, and should give at least some approximate information on the extent of electron release by X. Thus we recorded the photoelectron spectra of some of the (organosilyl)methyl-substituted benzenes, and obtained the IP's shown in Table 5. The features of the results are as follows:

(a) The IP's for Et₃SiCH₂Ph and n-Pr₃SiCH₂Ph are slightly but significantly lower than that for Me₃SiCH₂Ph, in keeping with the pattern of ν_{TCNE} values.

(2)

(3)

(4)

TABLE 5

		TD
PHITTIRLECTRIN SPECTRA HE XC/M/ COMPOUNDS. FIRST IONIZATION PUTENT	ALS.	11

x	IP (eV)	
H ₃ SiCH ₂	8.7	
Me ₃ SiCH ₂	8.39	
Et ₃ SiCH ₂	8.3	
n-Pr ₃ SiCH ₂	8.3	
(MeO)Me ₂ SiCH ₂	8.31	
(MeO) ₂ MeSiCH ₂	8.22	
(MeO) ₃ SiCH ₂	8.26	

TABLE 6

FIRST ORDER RATE CONSTANTS FOR DETRITIATION OF p-XC6H4 · ³H IN CF3CO2H AT 70.0°C

x	$10^7 k (s^{-1})$	σ_p^{+a}		
Me ₃ SiCH ₂	7000 ^b	0.56	 	
Et3SiCH2	10200	0.57		
n-Pr3SiCH2	10200	0.57		

^a From relationship defined in ref. 13. ^b Lit. [14] 7300 s⁻¹.

(b) The lower electron release by the H₃SiCH₂ than by the Me₃SiCH₂ group is reflected in the relevant IP's, and the observed difference in the IP's (0.3 eV) agrees satisfactorily with that (0.35 eV) which would be expected from the corresponding ν_{TCNE} values in terms of eq. 4. However, from the ν_{TCNE} and σ_p^+ values the IP for PhMe would be expected to be lower than that for H₃SiCH₂Ph, whereas the literature value [12] (9.13 eV) is substantially higher.

(c) There is surprisingly little change in the IP's on varying n in the series $(MeO)_n Me_{3-n}SiCH_2$. There is a small fall in the IP on going from n = 0 to n = 3, but the IP for $(MeO)_3SiCH_2Ph$ is substantially lower than that for H_3SiCH_2Ph , whereas rather similar IP's would have been expected from the corresponding ν_{TCNE} values. For the small range of compounds examined the variations in the IP's seem to be more closely related to those in the σ_R^0 values of the substituents.

Rates of protodetritiation

The rate of detritiation of XC_6H_4 .³H compounds in CF₃CO₂H is a sensitive measure of the electron releasing effects of the X groups and can be used to derive σ^+ values for X which are especially appropriate for use in electrophilic aromatic substitutions [13,14]. Thus rates of detritiation were measured for p-R₃SiCH₂·C₆H₄·³H with R = Me, Et and n-Pr, with the results shown in Table 6. In keeping with the indications given by the charge transfer and photoelectron spectra, the rates were a little higher for R = Et and n-Pr than for R = Me, and the derived σ_p^+ values are a good agreement with those shown in Table 1.

Experimental

Preparations of X_3 SiCH₂Ph compounds

(A) In a typical procedure, Et_3SiBr (0.16 mol) in ether (50 cm³) was added

dropwise to the Grignard reagent prepared from benzyl chloride (0.16 mol) and magnesium (0.20 g-atom) in ether (100 cm³), and the mixture was refluxed for 4 h. After the usual hydrolytic work up and removal of the ether, fractional distillation gave Et₃SiCH₂Ph, b.p. 105°C/5 mmHg (lit., [15], 249–250°C/748 mmHg), δ (ppm), 0.5–1.25 (m, 15 H, Et), 2.20 (s, 2 H, CH₂), 7.0–7.5 (s, 5 H, Ph).

A similar procedure gave: (a) n-Pr₃SiCH₂Ph, b.p. 100° C/4 mmHg (lit., 138– 140°C/7 mmHg), δ (ppm) 0.4–1.8 (m, 21 H, Pr), 2.15 (s, 2 H, CH₂Ph), 6.9– 7.5 (m, 5 H, Ph), and (b) Ph₃SiCH₂Ph, m.p. 99°C (after recrystallization from 95% aqueous (EtOH) (lit. [16], 97–99°C), δ 3.0 (s, CH₂), 7.0 (m, Ph).

A similar procedure but starting from MePh₂SiCl or Me₂PhSiBr instead of Et₃SiBr gave (a) MePh₂SiCH₂Ph, m.p. (after recrystallization from 95% EtOH) 68.0–69.0°C (lit. [15], 66.5–67.5°C), and (b) Me₂PhSiCH₂Ph, b.p. 100–110°C/3 mmHg (lit. [15], 92–93°C/0.15 mmHg), δ 0.43 (s, 6 H, Me₂), 5.48 (s, 2 H, CH₂), 7.0–7.85 (m, 10 H, arylH).

(B) The compound PhCH₂SiCl₃ was made from PhCH₂MgCl and SiCl₄ in ether; after filtration of the product mixture, volatile materials were distilled out under vacuum, and then fractionally distilled to give material of b.p. 130°C/52 mmHg (lit. [17] 215°C/760 mmHg). The related compounds MeCl₂-SiCH₂Ph, b.p. 130–131°C/53 mmHg (lit. [18], 127–130°C/53 mmHg) and Me₂ClSiCH₂Ph b.p. 95°C/15 mmHg (lit. [15], 94–95°C/14 mmHg) were prepared analogously.

(C) Treatment of PhCH₂SiCl₃ (0.36 mol) in dry n-hexane (500 cm³) dropwise with stirring and cooling with a solution of MeOH (1.1 mol) and Et₃N (1 mol) in n-hexane (100 cm³), followed by 1 h of reflux, addition to a mixture of ice-water and light petroleum, separation and drying (MgSO₄) of the organic layer, removal of the solvent and fractional distillation of the residue gave (MeO)₃SiCH₂Ph (31%), b.p. 115–116°C/17 mmHg (lit. [19], b.p. 227.7/760 mmHg), δ (ppm) 2.07 (s, 2 H, CH₂); 3.40 (s, 9 H, OMe), 6.80–6.97 (m, 5 H, Ph) (Found: C, 56.7; H, 7.5. C₁₀H₁₆O₃Si calcd.: C, 56.6; H, 7.5%).

Analogous procedures starting from MeCl₂SiCH₂Ph and Me₂ClSiCH₂Ph gave (a) (MeO)₂MeSiCH₂Ph (78%), b.p. 107°C/17 mmHg (lit. [15], 55°C/0.3 mmHg), δ (ppm) -0.16 (s, 3 H, SiMe), 1.95 (s, 2 H, CH₂), 3.27 (s, 6 H, OMe) 6.77-6.97 (m, 5 H, Ph) (Found: C, 61.2; H, 8.2. C₁₀H₁₆O₂Si calcd.: C, 61.2; H, 8.2%), and (b) (MeO)Me₂SiCH₂Ph (75%), b.p. 92°C/17 mmHg, δ (ppm) -0.38 (s, 6 H, SiMe), 1.70 (s, 2 H, CH₂), 2.87 (s, 3 H, OMe), 6.5-6.70 (m, 5 H, Ph) (Found: C, 66.6; H, 9.1. C₁₀H₁₆OSi calcd., C, 66.7; H, 8.9%).

(D) The compound H₃SiCH₂Ph was prepared by reduction of Cl₃SiCH₂Ph with LiAlH₄ in ether; b.p. 57°C/30 mmHg (lit. [17], 150.3/760 mmHg) ν (SiH) 2150 cm⁻¹; δ (ppm) 2.15 (q, 2 H, CH₂), 3.62 (t, 3 H, SiH₃), 6.9–7.3 (m, 5 H, arylH).

Preparation of $p-R_3SiCH_2C_6H_4$ ·³H

Use of $p^{-3}H\cdot C_6H_4CH_2Cl$ in the Grignard procedures described above gave p-Et₃SiCH₂C₆H₄·³H and p-n-Pr₃SiCH₂C₆H₄·³H.

Charge transfer spectra

A Pye Unicam SP 1700 UV spectrometer was used. A suitable quantity of

organometallic compound (sufficient to give 50–70% absorption at the relevant maximum) was dissolved in 2 cm³ of 0.05 *M* tetracyanoethylene in purified CH₂Cl₂ contained in a 1 cm quartz cell. The wave length of the first maximum could usually be selected with confidence to within ± 2 nm, but in the case of (MeO)₂MeSiCH₂Ph and (MeO)₃SiCH₂Ph, overlap with the second maximum (which for all the silicon compounds examined fell in the range 398–415 nm) gave rise to a rather larger uncertainty (± 4 nm).

¹³C NMR spectra

These were recorded for 15% v/v solutions in $CDCl_3$ on a JEOL PFT 100 instrument at 25.149 Hz with Me₄Si as reference.

Kinetics of hydrogen exchange

The procedure used was that employed to study the detritiation of p-Me₃-SiCH₂C₆H₄·³H [14].

Acknowledgement

We thank the Dow Corning Co., Ltd., for gifts of organosilicon compounds. W.A.S. thanks the Polish Academy of Sciences for granting him leave of absence.

References

- 1 W. Hanstein, H.J. Berwin and T.G. Traylor, J. Amer. Chem. Soc., 92 (1970) 829.
- 2 D.D. Davis, J. Organometal. Chem., 206 (1981) 21.
- 3 V.A. Kuznetsov, A.N. Egorochkin, S.E. Skobeleva, G.A. Razuvaev, N.A. Pritula and G.Ya. Zueva, Obshch. Khim., 45 (1975) 2439.
- 4 G. Miyajama, H. Akiyama and K. Nishimoto, Org. Magnetic Resonance, 4 (1972) 811.
- 5 S. Ehrenson, R.T.C. Brownlee and R.W. Taft, Prog. Phys. Org. Chem., 10 (1973) 1.
- 6 J. Bromilow, R.T.C. Brownlee, V.O. Lopez and R.W. Taft, J. Org. Chem., 44 (1979) 4766.
- 7 R.W. Taft, E. Price, I.R. Fox, I.C. Lewis, K.K. Andersen and G.T. Davis, J. Amer. Chem. Soc., 85 (1963) 709, 3146.
- 8 N.C. Cutress, A.R. Katritzky, C. Eaborn, D.R.M. Walton and R.D. Topsom, J. Organometal. Chem., 43 (1972) 131.
- 9 G.L. Nelson and E.A. Williams, Prog. Phys. Org. Chem., 12 (1976) 229.
- 10 R.D. Topsom, Prog. Phys. Org. Chem., 12 (1976) 1.
- 11 P.G. Farrell and J. Newton, J. Phys. Chem., 69 (1965) 3507.
- 12 A.D. Baker, D.P. May and D.W. Turner, J. Chem. Soc. (B), (1968) 22.
- 13 R. Baker, C. Eaborn and R. Taylor, J. Chem. Soc., Perkin 2, (1972) 97.
- 14 C. Eaborn, T.A. Emokpae, V.I. Sidorov and R. Taylor, J. Chem. Soc., Perkin 2, (1974) 1454.
- 15 V. Bazant, V. Chvalovsky and J. Rathousky, Organosilicon Compounds, Academic Press, New York, 1965.
- 16 N.S. Nametkin, A.V. Topchiev and N.A. Pritula, Issled v. Obl. Kremniorgan Soed. in Sintez, Fiz-Khim. Svoistra Akad Nauk SSSR, (1962) 156.
- 17 H.H. Anderson and L.R. Grebe, J. Org. Chem., 26 (1961) 2006.
- 18 A.G. Brook, C.M. Warner and W.W. Limburg, Canad. J. Chem., 45 (1967) 1231.
- 19 M.G. Voronkov, J. Gen. Chem., USSR, 25 (1955) 1124.
- 20 N.S. Vyazankin, G.A. Razuvaev and V.T. Bychov, Dokl. Akad. Nauk. SSSR, 158 (1964) 382.
- 21 P.G. Sennikov, S.E. Skobeleva, V.A. Kuznetsov, A.N. Egorochkin, P. Rivière, J. Satgé and S. Rechelme, J. Organometal. Chem., 201 (1980) 213.
- 22 C.G. Pitt, J. Organometal. Chem., 23 (1970) C35; H. Sakurai and M. Kira, J. Amer. Chem. Soc., 96 (1974) 791.
- 23 H. Oberhammer and J.E. Boggs, J. Amer. Chem. Soc., 102 (1980) 7241.